- Hot Results
- Quick Search
- Large-scale studies
- Genome-wide Association Studies of ADHD
- Genome-wide Linkage Studies of ADHD
- Genome-wide CNV Analyses of ADHD
- Meta-analysis Studies of ADHD
- Data Summary
Gene Report
Approved Symbol | PRKCB |
---|---|
Previous Symbol | PRKCB2, PKCB, PRKCB1 |
Approved Name | protein kinase C, beta |
Previous Name | protein kinase C, beta 1 |
Location | 16p12 |
Position | chr16:23847300-24231932, + |
External Links |
HGNC: 9395 Entrez Gene: 5579 Ensembl: ENSG00000166501 UCSC: uc002dme.2 |
No. of Studies | 0 (significant: 0; non-significant: 0; trend: 0) |
Source | Mapped by significant region |
Region Name | Position | No. of Studies (significant/non-significant/trend) |
---|---|---|
16p12.3-12.2 | chr16:16800000-24200000 | 1 (1/0/0) |
GO terms by PBA (with statistical significance of FDR<0.05) (count: 0)
GO terms by database search (count: 39)
ID | Name | No. of Genes in ADHDgene | Brief Description |
---|---|---|---|
hsa04730 | Long-term depression | 27 | Cerebellar long-term depression (LTD), thought to be a molec...... Cerebellar long-term depression (LTD), thought to be a molecular and cellular basis for cerebellar learning, is a process involving a decrease in the synaptic strength between parallel fiber (PF) and Purkinje cells (PCs) induced by the conjunctive activation of PFs and climbing fiber (CF). Multiple signal transduction pathways have been shown to be involved in this process. Activation of PFs terminating on spines in dendritic branchlets leads to glutamate release and activation of both AMPA and mGluRs. Activation of CFs, which make multiple synaptic contacts on proximal dendrites, also via AMPA receptors, opens voltage-gated calcium channels (VGCCs) and causes a generalized influx of calcium. These cellular signals, generated from two different synaptic origins, trigger a cascade of events culminating in a phosphorylation-dependent, long-term reduction in AMPA receptor sensitivity at the PF-PC synapse. This may take place either through receptor internalization and/or through receptor desensitization. More... |
hsa04720 | Long-term potentiation | 15 | Hippocampal long-term potentiation (LTP), a long-lasting inc...... Hippocampal long-term potentiation (LTP), a long-lasting increase in synaptic efficacy, is the molecular basis for learning and memory. Tetanic stimulation of afferents in the CA1 region of the hippocampus induces glutamate release and activation of glutamate receptors in dendritic spines. A large increase in [Ca2+]i resulting from influx through NMDA receptors leads to constitutive activation of CaM kinase II (CaM KII) . Constitutively active CaM kinase II phosphorylates AMPA receptors, resulting in potentiation of the ionic conductance of AMPA receptors. Early-phase LTP (E-LTP) expression is due, in part, to this phosphorylation of the AMPA receptor. It is hypothesized that postsynaptic Ca2+ increases generated through NMDA receptors activate several signal transduction pathways including the Erk/MAP kinase and cAMP regulatory pathways. The convergence of these pathways at the level of the CREB/CRE transcriptional pathway may increase expression of a family of genes required for late-phase LTP (L-LTP). More... |
hsa04973 | Carbohydrate digestion and absorption | 9 | Dietary carbohydrate in humans and omnivorous animals is a m...... Dietary carbohydrate in humans and omnivorous animals is a major nutrient. The carbohydrates that we ingest vary from the lactose in milk to complex carbohydrates. These carbohydrates are digested to monosaccharides, mostly glucose, galactose and fructose, prior to absorption in the small intestine. Glucose and galactose are initially transported into the enterocyte by SGLT1 located in the apical brush border membrane and then exit through the basolateral membrane by either GLUT2 or exocytosis. In a new model of intestinal glucose absorption, transport by SGLT1 induces rapid insertion and activation of GLUT2 in the brush border membrane by a PKC betaII-dependent mechanism. Moreover, trafficking of apical GLUT2 is rapidly up-regulated by glucose and artificial sweeteners, which act through T1R2 + T1R3/alpha-gustducin to activate PLC-beta2 and PKC-beta II. Fructose is transported separately by the brush border GLUT5 and then released out of the enterocyte into the blood by GLUT2. More... |
hsa04960 | Aldosterone-regulated sodium reabsorption | 13 | Sodium transport across the tight epithelia of Na+ reabsorbi...... Sodium transport across the tight epithelia of Na+ reabsorbing tissues such as the distal part of the kidney nephron and colon is the major factor determining total-body Na+ levels, and thus, long-term blood pressure. Aldosterone plays a major role in sodium and potassium metabolism by binding to epithelial mineralocorticoid receptors (MR) in the renal collecting duct cells localized in the distal nephron, promoting sodium resorption and potassium excretion. Aldosterone enters a target cell and binds MR, which translocates into the nucleus and regulates gene transcription. Activation of MR leads to increased expression of Sgk-1, which phosphorylates Nedd4-2, an ubiquitin-ligase which targets ENAC to proteosomal degradation. Phosphorylated Nedd4-2 dissociates from ENAC, increasing its apical membrane abundance. Activation of MR also leads to increased expression of Na+/K+-ATPase, thus causing a net increase in sodium uptake from the renal filtrate. The specificity of MR for aldosterone is provided by 11beta-HSD2 by the rapid conversion of cortisol to cortisone in renal cortical collecting duct cells. Recently, besides genomic effects mediated by activated MR, rapid aldosterone actions that are independent of translation and transcription have been documented. More... |
hsa04310 | Wnt signaling pathway | 22 | Wnt proteins are secreted morphogens that are required for b...... Wnt proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. There are at least three different Wnt pathways: the canonical pathway, the planar cell polarity (PCP) pathway and the Wnt/Ca2+ pathway. In the canonical Wnt pathway, the major effect of Wnt ligand binding to its receptor is the stabilization of cytoplasmic beta-catenin through inhibition of the bea-catenin degradation complex. Beta-catenin is then free to enter the nucleus and activate Wnt-regulated genes through its interaction with TCF (T-cell factor) family transcription factors and concomitant recruitment of coactivators. Planar cell polarity (PCP) signaling leads to the activation of the small GTPases RHOA (RAS homologue gene-family member A) and RAC1, which activate the stress kinase JNK (Jun N-terminal kinase) and ROCK (RHO-associated coiled-coil-containing protein kinase 1) and leads to remodelling of the cytoskeleton and changes in cell adhesion and motility. WNT-Ca2+ signalling is mediated through G proteins and phospholipases and leads to transient increases in cytoplasmic free calcium that subsequently activate the kinase PKC (protein kinase C) and CAMKII (calcium calmodulin mediated kinase II) and the phosphatase calcineurin. More... |
hsa04664 | Fc epsilon RI signaling pathway | 20 | Fc epsilon RI-mediated signaling pathways in mast cells are ...... Fc epsilon RI-mediated signaling pathways in mast cells are initiated by the interaction of antigen (Ag) with IgE bound to the extracellular domain of the alpha chain of Fc epsilon RI. The activation pathways are regulated both positively and negatively by the interactions of numerous signaling molecules. Mast cells that are thus activated release preformed granules which contain biogenic amines (especially histamines) and proteoglycans (especially heparin). The activation of phospholipase A2 causes the release of membrane lipids followed by development of lipid mediators such as leukotrienes (LTC4, LTD4 and LTE4) and prostaglandins (especially PDG2). There is also secretion of cytokines, the most important of which are TNF-alpha, IL-4 and IL-5. These mediators and cytokines contribute to inflammatory responses. More... |
hsa05200 | Pathways in cancer | 52 | |
hsa04070 | Phosphatidylinositol signaling system | 19 | |
hsa05143 | African trypanosomiasis | 8 | Trypanosoma brucei, the parasite responsible for African try...... Trypanosoma brucei, the parasite responsible for African trypanosomiasis (sleeping sickness), are spread by the tsetse fly in sub-Saharan Africa. The parasites are able to pass through the blood-brain barrier and cause neurological damage by inducing cytokines like TNF alpha, IFN gamma, and IL1. These cytokines and other metabolites such as nitric oxide and somnogenic prostaglandin D2 disturb circadian rhythms in patients with African trypanosomiasis. More... |
hsa04510 | Focal adhesion | 40 | Cell-matrix adhesions play essential roles in important biol...... Cell-matrix adhesions play essential roles in important biological processes including cell motility, cell proliferation, cell differentiation, regulation of gene expression and cell survival. At the cell-extracellular matrix contact points, specialized structures are formed and termed focal adhesions, where bundles of actin filaments are anchored to transmembrane receptors of the integrin family through a multi-molecular complex of junctional plaque proteins. Some of the constituents of focal adhesions participate in the structural link between membrane receptors and the actin cytoskeleton, while others are signalling molecules, including different protein kinases and phosphatases, their substrates, and various adapter proteins. Integrin signaling is dependent upon the non-receptor tyrosine kinase activities of the FAK and src proteins as well as the adaptor protein functions of FAK, src and Shc to initiate downstream signaling events. These signalling events culminate in reorganization of the actin cytoskeleton; a prerequisite for changes in cell shape and motility, and gene expression. Similar morphological alterations and modulation of gene expression are initiated by the binding of growth factors to their respective receptors, emphasizing the considerable crosstalk between adhesion- and growth factor-mediated signalling. More... |
hsa04666 | Fc gamma R-mediated phagocytosis | 28 | Phagocytosis plays an essential role in host-defense mechani...... Phagocytosis plays an essential role in host-defense mechanisms through the uptake and destruction of infectious pathogens. Specialized cell types including macrophages, neutrophils, and monocytes take part in this process in higher organisms. After opsonization with antibodies (IgG), foreign extracellular materials are recognized by Fc gamma receptors. Cross-linking of Fc gamma receptors initiates a variety of signals mediated by tyrosine phosphorylation of multiple proteins, which lead through the actin cytoskeleton rearrangements and membrane remodeling to the formation of phagosomes. Nascent phagosomes undergo a process of maturation that involves fusion with lysosomes. The acquisition of lysosomal proteases and release of reactive oxygen species are crucial for digestion of engulfed materials in phagosomes. More... |
hsa05214 | Glioma | 9 | Gliomas are the most common of the primary brain tumors and ...... Gliomas are the most common of the primary brain tumors and account for more than 40% of all central nervous system neoplasms. Gliomas include tumours that are composed predominantly of astrocytes (astrocytomas), oligodendrocytes (oligodendrogliomas), mixtures of various glial cells (for example,oligoastrocytomas) and ependymal cells (ependymomas). The most malignant form of infiltrating astrocytoma - glioblastoma multiforme (GBM) - is one of the most aggressive human cancers. GBM may develop de novo (primary glioblastoma) or by progression from low-grade or anaplastic astrocytoma (secondary glioblastoma). Primary glioblastomas develop in older patients and typically show genetic alterations (EGFR amplification, p16/INK4a deletion, and PTEN mutations) at frequencies of 24-34%. Secondary glioblastomas develop in younger patients and frequently show overexpression of PDGF and CDK4 as well as p53 mutations (65%) and loss of Rb playing major roles in such transformations. Loss of PTEN has been implicated in both pathways, although it is much more common in the pathogenesis of primary GBM. More... |
hsa04670 | Leukocyte transendothelial migration | 22 | Leukocyte migaration from the blood into tissues is vital fo...... Leukocyte migaration from the blood into tissues is vital for immune surveillance and inflammation. During this diapedesis of leukocytes, the leukocytes bind to endothelial cell adhesion molecules (CAM) and then migrate across the vascular endothelium. A leukocyte adherent to CAMs on the endothelial cells moves forward by leading-edge protrusion and retraction of its tail. In this process, alphaL /beta2 integrin activates through Vav1, RhoA, which subsequently activates the kinase p160ROCK. ROCK activation leads to MLC phosphorylation, resulting in retraction of the actin cytoskeleton. Moreover, Leukocytes activate endothelial cell signals that stimulate endothelial cell retraction during localized dissociation of the endothelial cell junctions. ICAM-1-mediated signals activate an endothelial cell calcium flux and PKC, which are required for ICAM-1 dependent leukocyte migration. VCAM-1 is involved in the opening of the "endothelial passage" through which leukocytes can extravasate. In this regard, VCAM-1 ligation induces NADPH oxidase activation and the production of reactive oxygen species (ROS) in a Rac-mediated manner, with subsequent activation of matrix metallopoteinases and loss of VE-cadherin-mediated adhesion. More... |
hsa04530 | Tight junction | 18 | Epithelial tight junctions (TJs) are composed of at least th...... Epithelial tight junctions (TJs) are composed of at least three types of transmembrane protein -occludin, claudin and junctional adhesion molecules (JAMs)- and a cytoplasmic 'plaque' consisting of many different proteins that form large complexes. The transmembrane proteins mediate cell adhesion and are thought to constitute the intramembrane and paracellular diffusion barriers. The cytoplasmic 'plaque' contains three major multi-protein complexes consisting largely of scaffolding proteins, the ZO protein complex, the CRB3-Pals1-PATJ complex and the PAR-3-aPKC-PAR-6 complex. The ZO protein complex appears to organize the transmembrane proteins and couple them to other cytoplasmic proteins and to actin microfilaments. Two evolutionarily conserved protein complexes, the CRB3 and PAR complexes are involved in the establishment and maintenance of epithelial cell polarity. Besides these three protein complexes which seem to be constitutively associated at TJs, a number of proteins with different functions has been identified at TJs. These include additional scaffolding proteins like MUPP1 and MAGI-1, adaptor proteins, transcription regulators and RNA processing factors, regulatory proteins like small GTPases and G-proteins, kinases and phosphatases, and heat shock proteins. These are proposed to be involved in junction assembly, barrier regulation, gene transcription, and perhaps other, presently undefined pathways. More... |
hsa05146 | Amoebiasis | 19 | Entamoeba histolytica, an extracellular protozoan parasite i...... Entamoeba histolytica, an extracellular protozoan parasite is a human pathogen that invades the intestinal epithelium. Infection occurs on ingestion of contaminated water and food. The pathogenesis of amoebiasis begins with parasite attachment and disruption of the intestinal mucus layer, followed by apoptosis of host epithelial cells. Intestinal tissue destruction causes severe dysentery and ulcerations in amoebic colitis. Several amoebic proteins such as lectins, cysteine proteineases, and amoebapores are associated with the invasion process. The parasite can cause extraintestinal infection like amoebic liver abscess by evading immune response. More... |
hsa04010 | MAPK signaling pathway | 69 | The mitogen-activated protein kinase (MAPK) cascade is a hig...... The mitogen-activated protein kinase (MAPK) cascade is a highly conserved module that is involved in various cellular functions, including cell proliferation, differentiation and migration. Mammals express at least four distinctly regulated groups of MAPKs, extracellular signal-related kinases (ERK)-1/2, Jun amino-terminal kinases (JNK1/2/3), p38 proteins (p38alpha/beta/gamma/delta) and ERK5, that are activated by specific MAPKKs: MEK1/2 for ERK1/2, MKK3/6 for the p38, MKK4/7 (JNKK1/2) for the JNKs, and MEK5 for ERK5. Each MAPKK, however, can be activated by more than one MAPKKK, increasing the complexity and diversity of MAPK signalling. Presumably each MAPKKK confers responsiveness to distinct stimuli. For example, activation of ERK1/2 by growth factors depends on the MAPKKK c-Raf, but other MAPKKKs may activate ERK1/2 in response to pro-inflammatory stimuli. More... |
hsa05110 | Vibrio cholerae infection | 10 | Cholera toxin (CTX) is one of the main virulence factors of ...... Cholera toxin (CTX) is one of the main virulence factors of Vibrio cholerae. Once secreted, CTX B-chain (CTXB) binds to ganglioside GM1 on the surface of the host's cells. After binding takes place, the entire CTX complex is carried from plasma membrane (PM) to endoplasmic reticulum (ER). In the ER, the A-chain (CTXA) is recognized by protein disulfide isomerase (PDI), unfolded, and delivered to the membrane where the membrane-associated ER-oxidase, Ero1, oxidizes PDI to release the CTXA into the protein-conducting channel, Sec61. CTXA is then retro-translocated to the cytosol and induces water and electrolyte secretion by increasing cAMP levels via adenylate cyclase (AC) to exert toxicity. More... |
hsa04270 | Vascular smooth muscle contraction | 33 | The vascular smooth muscle cell (VSMC) is a highly specializ...... The vascular smooth muscle cell (VSMC) is a highly specialized cell whose principal function is contraction. On contraction, VSMCs shorten, thereby decreasing the diameter of a blood vessel to regulate the blood flow and pressure. More... |
hsa04020 | Calcium signaling pathway | 63 | Ca2+ that enters the cell from the outside is a principal so...... Ca2+ that enters the cell from the outside is a principal source of signal Ca2+. Entry of Ca2+ is driven by the presence of a large electrochemical gradient across the plasma membrane. Cells use this external source of signal Ca2+ by activating various entry channels with widely different properties. The voltage-operated channels (VOCs) are found in excitable cells and generate the rapid Ca2+ fluxes that control fast cellular processes. There are many other Ca2+-entry channels, such as the receptor-operated channels (ROCs), for example the NMDA (N-methyl-D-aspartate) receptors (NMDARs) that respond to glutamate. There also are second-messenger-operated channels (SMOCs) and store-operated channels (SOCs). More... |
hsa05140 | Leishmaniasis | 14 | Leishmania is an intracellular protozoan parasite of macroph...... Leishmania is an intracellular protozoan parasite of macrophages that causes visceral, mucosal, and cutaneous diseases. The parasite is transmitted to humans by sandflies, where they survive and proliferate intracellularly by deactivating the macrophage. Successful infection of Leishmania is achieved by alteration of signaling events in the host cell, leading to enhanced production of the autoinhibitory molecules like TGF-beta and decreased induction of cytokines such as IL12 for protective immunity. Nitric oxide production is also inhibited. In addition, defective expression of major histocompatibility complex (MHC) genes silences subsequent T cell activation mediated by macrophages, resulting in abnormal immune responses. More... |
hsa04062 | Chemokine signaling pathway | 32 | Inflammatory immune response requires the recruitment of leu...... Inflammatory immune response requires the recruitment of leukocytes to the site of inflammation upon foreign insult. Chemokines are small chemoattractant peptides that provide directional cues for the cell trafficking and thus are vital for protective host response. In addition, chemokines regulate plethora of biological processes of hematopoietic cells to lead cellular activation, differentiation and survival. More... |
hsa04912 | GnRH signaling pathway | 28 | Gonadotropin-releasing hormone (GnRH) secretion from the hyp...... Gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH. The GnRHR is coupled to Gq/11 proteins to activate phospholipase C which transmits its signal to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates the intracellular protein kinase C (PKC) pathway and IP3 stimulates release of intracellular calcium. In addition to the classical Gq/11, coupling of Gs is occasionally observed in a cell-specific fashion. Signaling downstream of protein kinase C (PKC) leads to transactivation of the epidermal growth factor (EGF) receptor and activation of mitogen-activated protein kinases (MAPKs), including extracellular-signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAPK. Active MAPKs translocate to the nucleus, resulting in activation of transcription factors and rapid induction of early genes. More... |
hsa04540 | Gap junction | 27 | Gap junctions contain intercellular channels that allow dire...... Gap junctions contain intercellular channels that allow direct communication between the cytosolic compartments of adjacent cells. Each gap junction channel is formed by docking of two 'hemichannels', each containing six connexins, contributed by each neighboring cell. These channels permit the direct transfer of small molecules including ions, amino acids, nucleotides, second messengers and other metabolites between adjacent cells. Gap junctional communication is essential for many physiological events, including embryonic development, electrical coupling, metabolic transport, apoptosis, and tissue homeostasis. Communication through Gap Junction is sensitive to a variety of stimuli, including changes in the level of intracellular Ca2+, pH, transjunctional applied voltage and phosphorylation/dephosphorylation processes. This figure represents the possible activation routes of different protein kinases involved in Cx43 and Cx36 phosphorylation. More... |
hsa04370 | VEGF signaling pathway | 19 | There is now much evidence that VEGFR-2 is the major mediato...... There is now much evidence that VEGFR-2 is the major mediator of VEGF-driven responses in endothelial cells and it is considered to be a crucial signal transducer in both physiologic and pathologic angiogenesis. The binding of VEGF to VEGFR-2 leads to a cascade of different signaling pathways, resulting in the up-regulation of genes involved in mediating the proliferation and migration of endothelial cells and promoting their survival and vascular permeability. For example, the binding of VEGF to VEGFR-2 leads to dimerization of the receptor, followed by intracellular activation of the PLCgamma;PKC-Raf kinase-MEK-mitogen-activated protein kinase (MAPK) pathway and subsequent initiation of DNA synthesis and cell growth, whereas activation of the phosphatidylinositol 3' -kinase (PI3K)-Akt pathway leads to increased endothelial-cell survival. Activation of PI3K, FAK, and p38 MAPK is implicated in cell migration signaling. More... |
hsa04724 | Glutamatergic synapse | 43 | Glutamate is the major excitatory neurotransmitter in the ma...... Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system(CNS). Glutamate is packaged into synaptic vesicles in the presynaptic terminal. Once released into the synaptic cleft, glutamate acts on postsynaptic ionotropic glutamate receptors (iGluRs) to mediate fast excitatory synaptic transmission. Glutamate can also act on metabotropic glutamate receptors (mGluRs) and exert a variety of modulatory effects through their coupling to G proteins and the subsequent recruitment of second messenger systems. Presynaptically localized Group II and Group III mGluRs are thought to represent the classical inhibitory autoreceptor mechanism that suppresses excess glutamate release. After its action on these receptors, glutamate can be removed from the synaptic cleft by EAATs located either on the presynaptic terminal, neighboring glial cells, or the postsynaptic neuron. In glia, glutamate is converted to glutamine, which is then transported back to the presynaptic terminal and converted back to glutamate. More... |
hsa04970 | Salivary secretion | 22 | Saliva has manifold functions in maintaining the integrity o...... Saliva has manifold functions in maintaining the integrity of the oral tissues, in protecting teeth from caries, in the tasting and ingestion of food, in speech and in the tolerance of tenures, for example. Salivary secretion occurs in response to stimulation by neurotransmitters released from autonomic nerve endings. There are two secretory pathways: protein exocytosis and fluid secretion. Sympathetic stimulation leads to the activation of adenylate cyclase and accumulation of intracellular cAMP. The elevation of cAMP causes the secretion of proteins such as amylase and mucin. In contrast, parasympathetic stimulation activates phospholipase C and causes the elevation of intracellular Ca2+, which leads to fluid secretion; that is, water and ion transport. Ca2+ also induces amylase secretion, but the amount is smaller than that induced by cAMP. More... |
hsa04971 | Gastric acid secretion | 12 | Gastric acid is a key factor in normal upper gastrointestina...... Gastric acid is a key factor in normal upper gastrointestinal functions, including protein digestion and calcium and iron absorption, as well as providing some protection against bacterial infections. The principal stimulants of acid secretion at the level of the parietal cell are histamine (paracrine), gastrin (hormonal), and acetycholine (ACh; neurocrine). Stimulation of acid secretion typically involves an initial elevation of intracellular calcium and cAMP, followed by activation of protein kinase cascades, which trigger the translocation of the proton pump, H+,K+-ATPase, from cytoplasmic tubulovesicles to the apical plasma membrane and thereby H+ secretion into the stomach lumen. More... |
hsa04012 | ErbB signaling pathway | 21 | The ErbB family of receptor tyrosine kinases (RTKs) couples ...... The ErbB family of receptor tyrosine kinases (RTKs) couples binding of extracellular growth factor ligands to intracellular signaling pathways regulating diverse biologic responses, including proliferation, differentiation, cell motility, and survival. Ligand binding to the four closely related members of this RTK family -epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER1), ErbB-2 (HER2), ErbB-3 (HER3), and ErbB-4 (HER4)-induces the formation of receptor homo- and heterodimers and the activation of the intrinsic kinase domain, resulting in phosphorylation on specific tyrosine residues (pY) within the cytoplasmic tail. Signaling effectors containing binding pockets for pY-containing peptides are recruited to activated receptors and induce the various signaling pathways. The Shc- and/or Grb2-activated mitogen-activated protein kinase (MAPK) pathway is a common target downstream of all ErbB receptors. Similarly, the phosphatidylinositol-3-kinase (PI-3K) pathway is directly or indirectly activated by most ErbBs. Several cytoplasmic docking proteins appear to be recruited by specific ErbB receptors and less exploited by others. These include the adaptors Crk, Nck, the phospholipase C gamma (PLCgamma), the intracellular tyrosine kinase Src, or the Cbl E3 ubiquitin protein ligase. More... |
hsa04916 | Melanogenesis | 15 | Cutaneous melanin pigment plays a critical role in camouflag...... Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortic peptides. MC1R activates the cyclic AMP (cAMP) response-element binding protein (CREB). Increased expression of MITF and its activation by phosphorylation (P) stimulate the transcription of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT), which produce melanin. Melanin synthesis takes place within specialized intracellular organelles named melanosomes. Melanin-containing melanosomes then move from the perinuclear region to the dendrite tips and are transferred to keratinocytes by a still not well-characterized mechanism. More... |
hsa04662 | B cell receptor signaling pathway | 14 | B cells are an important component of adaptive immunity. The...... B cells are an important component of adaptive immunity. They produce and secrete millions of different antibody molecules, each of which recognizes a different (foreign) antigen. The B cell receptor (BCR) is an integral membrane protein complex that is composed of two immunoglobulin (Ig) heavy chains, two Ig light chains and two heterodimers of Ig-alpha and Ig-beta. After BCR ligation by antigen, three main protein tyrosine kinases (PTKs) -the SRC-family kinase LYN, SYK and the TEC-family kinase BTK- are activated. Phosphatidylinositol 3-kinase (PI3K) and phospholipase C-gamma 2 (PLC-gamma 2) are important downstream effectors of BCR signalling. This signalling ultimately results in the expression of immediate early genes that further activate the expression of other genes involved in B cell proliferation, differentiation and Ig production as well as other processes. More... |
hsa04650 | Natural killer cell mediated cytotoxicity | 16 | Natural killer (NK) cells are lymphocytes of the innate immu...... Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in early defenses against both allogeneic (nonself) cells and autologous cells undergoing various forms of stress, such as infection with viruses, bacteria, or parasites or malignant transformation. Although NK cells do not express classical antigen receptors of the immunoglobulin gene family, such as the antibodies produced by B cells or the T cell receptor expressed by T cells, they are equipped with various receptors whose engagement allows them to discriminate between target and nontarget cells. Activating receptors bind ligands on the target cell surface and trigger NK cell activation and target cell lysis. However Inhibitory receptors recognize MHC class I molecules (HLA) and inhibit killing by NK cells by overruling the actions of the activating receptors. This inhibitory signal is lost when the target cells do not express MHC class I and perhaps also in cells infected with virus, which might inhibit MHC class I exprssion or alter its conformation. The mechanism of NK cell killing is the same as that used by the cytotoxic T cells generated in an adaptive immune response; cytotoxic granules are released onto the surface of the bound target cell, and the effector proteins they contain penetrate the cell membrane and induce programmed cell death. More... |
hsa05223 | Non-small cell lung cancer | 10 | Lung cancer is a leading cause of cancer death among men and...... Lung cancer is a leading cause of cancer death among men and women in industrialized countries. Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer and represents a heterogeneous group of cancers, consisting mainly of squamous cell (SCC), adeno (AC) and large-cell carcinoma. Molecular mechanisms altered in NSCLC include activation of oncogenes, such as K-RAS and c-erbB-2, and inactivation of tumorsuppressor genes, such as p53, p16INK4a, RAR-beta, and RASSF1. Point mutations within the K-RAS gene inactivate GTPase activity and the p21-RAS protein continuously transmits growth signals to the nucleus. Overexpression of c-erbB-2 or EGFR leads to a proliferative advantage. Inactivating mutation of p53 can lead to more rapid proliferation and reduced apoptosis. The protein encoded by the p16INK4a inhibits formation of CDK-cyclin-D complexes by competitive binding of CDK4 and CDK6. Loss of p16INK4a expression is a common feature of NSCLC. RAR-beta is a nuclear receptor that bears vitamin-A-dependent transcriptional activity. RASSF1A is able to form heterodimers with Nore-1, an RAS effector.Therefore loss of RASSF1A might shift the balance of RAS activity towards a growth-promoting effect. More... |
hsa04972 | Pancreatic secretion | 30 | The pancreas performs both exocrine and endocrine functions....... The pancreas performs both exocrine and endocrine functions. The exocrine pancreas consists of two parts, the acinar and duct cells. The primary functions of pancreatic acinar cells are to synthesize and secrete digestive enzymes. Stimulation of the cell by secretagogues such as acetylcholine (ACh) and cholecystokinin (CCK) causes the generation of an intracellular Ca2+ signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. The major task of pancreatic duct cells is the secretion of fluid and bicarbonate ions (HCO3-), which neutralize the acidity of gastric contents that enter the duodenum. An increase in intracellular cAMP by secretin is one of the major signals of pancreatic HCO3- secretion. Activation of the CFTR Cl- channel and the CFTR-dependent Cl-/HCO3- exchange activities is responsible for cAMP-induced HCO3- secretion. More... |
hsa04961 | Endocrine and other factor-regulated calcium reabsorption | 8 | Calcium (Ca2+) is essential for numerous physiological funct...... Calcium (Ca2+) is essential for numerous physiological functions including intracellular signalling processes, neuronal excitability, muscle contraction and bone formation. Therefore, its homeostasis is finely maintained through the coordination of intestinal absorption, renal reabsorption, and bone resorption. In kidney, the late part of the distal convoluted tubule (DCT) and the connecting tubule (CNT) are the site of active Ca2+ transport and precisely regulate Ca2+ reabsorption. Following Ca2+ entry through TRPV5, Ca2+ bound to calbindin-D28K diffuses to the basolateral side, where it is extruded into the blood compartment through NCX1 and to a lesser extent PMCA1b. In the urinary compartment, both klotho and tissue kallikrein (TK) increase the apical abundance of TRPV5. In the blood compartment, PTH, 1,25(OH)2D3 and estrogen increase the transcription and protein expression of the luminal Ca2+ channels, calbindins, and the extrusion systems. More... |
Region: chr16:23847300..24231932 View in gBrowse
Copyright: Bioinformatics Lab, Institute of Psychology, Chinese Academy of Sciences Feedback
Last update: Feb 26, 2014