ID |
Name |
No. of Genes in ADHDgene |
Brief Description |
hsa05014 |
Amyotrophic lateral sclerosis (ALS) |
11 |
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal......
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, degenerative disorder of motor neurons. The hallmark of this disease is the selective death of motor neurons in the brain and spinal cord, leading to paralysis of voluntary muscles. Mutant superoxide dismutase 1 (SOD1), as seen in some familial ALS (FALS) cases, is unstable, forming aggregates in the motor neuron cytoplasm, axoplasm and mitochondria. Within mitochondria, mutant SOD1 may interfere with the anti-apoptotic function of Bcl-2, affect mitochondrial import by interfering with the translocation machinery (TOM/TIM), and generate toxic free radicals (ROS). Reactive oxygen species (ROS), produced within mitochondria, inhibit the function of EAAT2, the main glial glutamate transporter protein, responsible for most of the reuptake of synaptically released glutamate. Glutamate excess increases intracellular calcium, which enhances oxidative stress and mitochondrial damage. Mutant SOD1 can also trigger oxidative reactions , which can then cause damage through the formation of hydroxyl radicals or via nitration of tyrosine residues on proteins. Nitration may target neurofilament proteins, affecting axonal transport. Collectively, these mechanisms are predicted to disturb cellular homeostasis, ultimately triggering motor neuron death.
More...
|
hsa04722 |
Neurotrophin signaling pathway |
24 |
Neurotrophins are a family of trophic factors involved in di......
Neurotrophins are a family of trophic factors involved in differentiation and survival of neural cells. The neurotrophin family consists of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Neurotrophins exert their functions through engagement of Trk tyrosine kinase receptors or p75 neurotrophin receptor (p75NTR). Neurotrophin/Trk signaling is regulated by connecting a variety of intracellular signaling cascades, which include MAPK pathway, PI-3 kinase pathway, and PLC pathway, transmitting positive signals like enhanced survival and growth. On the other hand, p75NTR transmits both positive and nagative signals. These signals play an important role for neural development and additional higher-order activities such as learning and memory.
More...
|
hsa04010 |
MAPK signaling pathway |
69 |
The mitogen-activated protein kinase (MAPK) cascade is a hig......
The mitogen-activated protein kinase (MAPK) cascade is a highly conserved module that is involved in various cellular functions, including cell proliferation, differentiation and migration. Mammals express at least four distinctly regulated groups of MAPKs, extracellular signal-related kinases (ERK)-1/2, Jun amino-terminal kinases (JNK1/2/3), p38 proteins (p38alpha/beta/gamma/delta) and ERK5, that are activated by specific MAPKKs: MEK1/2 for ERK1/2, MKK3/6 for the p38, MKK4/7 (JNKK1/2) for the JNKs, and MEK5 for ERK5. Each MAPKK, however, can be activated by more than one MAPKKK, increasing the complexity and diversity of MAPK signalling. Presumably each MAPKKK confers responsiveness to distinct stimuli. For example, activation of ERK1/2 by growth factors depends on the MAPKKK c-Raf, but other MAPKKKs may activate ERK1/2 in response to pro-inflammatory stimuli.
More...
|
hsa04141 |
Protein processing in endoplasmic reticulum |
26 |
The endoplasmic reticulum (ER) is a subcellular organelle wh......
The endoplasmic reticulum (ER) is a subcellular organelle where proteins are folded with the help of lumenal chaperones. Newly synthesized peptides enter the ER via the sec61 pore and are glycosylated. Correctly folded proteins are packaged into transport vesicles that shuttle them to the Golgi complex. Misfolded proteins are retained within the ER lumen in complex with molecular chaperones. Proteins that are terminally misfolded bind to BiP and are directed toward degradation through the proteasome in a process called ER-associated degradation (ERAD). Accumulation of misfolded proteins in the ER causes ER stress and activates a signaling pathway called the unfolded protein response (UPR). In certain severe situations, however, the protective mechanisms activated by the UPR are not sufficient to restore normal ER function and cells die by apoptosis.
More...
|