ID |
Name |
No. of Genes in ADHDgene |
Brief Description |
hsa05323 |
Rheumatoid arthritis |
17 |
Rheumatoid arthritis (RA) is a chronic autoimmune joint dise......
Rheumatoid arthritis (RA) is a chronic autoimmune joint disease where persistent inflammation affects bone remodeling leading to progressive bone destruction. In RA, abnormal activation of the immune system elevates pro-inflammatory cytokines and chemokines levels, which can promote synovial angiogenesis and leukocyte infiltration. The synovium forms a hyperplastic pannus with infiltrated macrophage-like and fibroblast-like synoviocytes and invades joints by secreting proteinases and inducing osteoclast differentiation.
More...
|
hsa04360 |
Axon guidance |
25 |
Axon guidance represents a key stage in the formation of neu......
Axon guidance represents a key stage in the formation of neuronal network. Axons are guided by a variety of guidance factors, such as netrins, ephrins, Slits, and semaphorins. These guidance cues are read by growth cone receptors, and signal transduction pathways downstream of these receptors converge onto the Rho GTPases to elicit changes in cytoskeletal organization that determine which way the growth cone will turn.
More...
|
hsa04062 |
Chemokine signaling pathway |
32 |
Inflammatory immune response requires the recruitment of leu......
Inflammatory immune response requires the recruitment of leukocytes to the site of inflammation upon foreign insult. Chemokines are small chemoattractant peptides that provide directional cues for the cell trafficking and thus are vital for protective host response. In addition, chemokines regulate plethora of biological processes of hematopoietic cells to lead cellular activation, differentiation and survival.
More...
|
hsa04670 |
Leukocyte transendothelial migration |
22 |
Leukocyte migaration from the blood into tissues is vital fo......
Leukocyte migaration from the blood into tissues is vital for immune surveillance and inflammation. During this diapedesis of leukocytes, the leukocytes bind to endothelial cell adhesion molecules (CAM) and then migrate across the vascular endothelium. A leukocyte adherent to CAMs on the endothelial cells moves forward by leading-edge protrusion and retraction of its tail. In this process, alphaL /beta2 integrin activates through Vav1, RhoA, which subsequently activates the kinase p160ROCK. ROCK activation leads to MLC phosphorylation, resulting in retraction of the actin cytoskeleton. Moreover, Leukocytes activate endothelial cell signals that stimulate endothelial cell retraction during localized dissociation of the endothelial cell junctions. ICAM-1-mediated signals activate an endothelial cell calcium flux and PKC, which are required for ICAM-1 dependent leukocyte migration. VCAM-1 is involved in the opening of the "endothelial passage" through which leukocytes can extravasate. In this regard, VCAM-1 ligation induces NADPH oxidase activation and the production of reactive oxygen species (ROS) in a Rac-mediated manner, with subsequent activation of matrix metallopoteinases and loss of VE-cadherin-mediated adhesion.
More...
|
hsa04060 |
Cytokine-cytokine receptor interaction |
38 |
Cytokines are soluble extracellular proteins or glycoprotein......
Cytokines are soluble extracellular proteins or glycoproteins that are crucial intercellular regulators and mobilizers of cells engaged in innate as well as adaptive inflammatory host defenses, cell growth, differentiation, cell death, angiogenesis, and development and repair processes aimed at the restoration of homeostasis. Cytokines are released by various cells in the body, usually in response to an activating stimulus, and they induce responses through binding to specific receptors on the cell surface of target cells. Cytokines can be grouped by structure into different families and their receptors can likewise be grouped.
More...
|
hsa04672 |
Intestinal immune network for IgA production |
5 |
The intestine is the largest lymphoid tissue in the body. On......
The intestine is the largest lymphoid tissue in the body. One striking feature of intestinal immunity is its ability to generate great amounts of noninflammatory immunoglobulin A (IgA) antibodies that serve as the first line of defense against microorganisms. The basic map of IgA production includes induction of mucosal B cells in the Peyer's patches, circulation through the bloodstream and homing to intestinal mucosa of IgA-commited plasma cells, and local antibody production for export across the intestinal membranes. Multiple cytokines, including TGF-{beta}, IL-10, IL-4, IL-5, and IL-6, are required to promote IgA class switching and terminal differentiation process of the B cells. Secreted IgA promotes immune exclusion by entrapping dietary antigens and microorganisms in the mucus and functions for neutralization of toxins and pathogenic microbes.
More...
|