- Hot Results
- Quick Search
- Large-scale studies
- Genome-wide Association Studies of ADHD
- Genome-wide Linkage Studies of ADHD
- Genome-wide CNV Analyses of ADHD
- Meta-analysis Studies of ADHD
- Data Summary
Gene Report
Approved Symbol | ITPR2 |
---|---|
Symbol Alias | IP3R2 |
Approved Name | inositol 1,4,5-trisphosphate receptor, type 2 |
Previous Name | inositol 1,4,5-triphosphate receptor, type 2 |
Location | 12p11.23 |
Position | chr12:26488285-26986131, - |
External Links |
HGNC: 6181 Entrez Gene: 3709 Ensembl: ENSG00000123104 UCSC: uc001rhg.2 |
No. of Studies | 0 (significant: 0; non-significant: 0; trend: 0) |
Source | Mapped by LD-proxy; Mapped by literature SNP |
Literature-origin SNPs (count: 1)
rs_ID | Location | Functional Annotation | No. of Studies (significant/non-significant/trend) |
---|---|---|---|
rs3782309 | Chr12:26859396(Fwd) | intron_variant; nc_transcript_variant | 2(0/2/0) |
LD-proxies (count: 14)
rs_ID | Location | Functional Annotation |
---|---|---|
rs17480903 | Chr12:26883984(Fwd) | NMD_transcript_variant; intron_variant |
rs1449569 | Chr12:26911467(Fwd) | NMD_transcript_variant; intron_variant |
rs17480798 | Chr12:26878766(Fwd) | NMD_transcript_variant; intron_variant; nc_transcript_variant; non_coding_exon_variant |
rs7313538 | Chr12:26881271(Fwd) | NMD_transcript_variant; intron_variant; upstream_gene_variant |
rs11613431 | Chr12:26684343(Fwd) | intron_variant |
rs7137796 | Chr12:26695127(Fwd) | intron_variant |
rs11613811 | Chr12:26681329(Fwd) | intron_variant |
rs11615475 | Chr12:26684296(Fwd) | intron_variant |
rs11608578 | Chr12:26721930(Fwd) | intron_variant |
rs17397644 | Chr12:26736660(Fwd) | intron_variant |
rs11611069 | Chr12:26701106(Fwd) | intron_variant |
rs11608490 | Chr12:26707811(Fwd) | intron_variant |
rs17396348 | Chr12:26680492(Fwd) | intron_variant |
rs7297408 | Chr12:26675355(Fwd) | intron_variant |
GO terms by PBA (with statistical significance of FDR<0.05) (count: 0)
GO terms by database search (count: 23)
ID | Name | No. of Genes in ADHDgene | Brief Description |
---|---|---|---|
hsa04730 | Long-term depression | 27 | Cerebellar long-term depression (LTD), thought to be a molec...... Cerebellar long-term depression (LTD), thought to be a molecular and cellular basis for cerebellar learning, is a process involving a decrease in the synaptic strength between parallel fiber (PF) and Purkinje cells (PCs) induced by the conjunctive activation of PFs and climbing fiber (CF). Multiple signal transduction pathways have been shown to be involved in this process. Activation of PFs terminating on spines in dendritic branchlets leads to glutamate release and activation of both AMPA and mGluRs. Activation of CFs, which make multiple synaptic contacts on proximal dendrites, also via AMPA receptors, opens voltage-gated calcium channels (VGCCs) and causes a generalized influx of calcium. These cellular signals, generated from two different synaptic origins, trigger a cascade of events culminating in a phosphorylation-dependent, long-term reduction in AMPA receptor sensitivity at the PF-PC synapse. This may take place either through receptor internalization and/or through receptor desensitization. More... |
hsa05010 | Alzheimer's disease | 40 | Alzheimer's disease (AD) is a chronic disorder that slowly d...... Alzheimer's disease (AD) is a chronic disorder that slowly destroys neurons and causes serious cognitive disability. AD is associated with senile plaques and neurofibrillary tangles (NFTs). Amyloid-beta (Abeta), a major component of senile plaques, has various pathological effects on cell and organelle function. The extracellular Abeta oligomers may activate caspases through activation of cell surface death receptors. Alternatively, intracellular Abeta may contribute to pathology by facilitating tau hyper-phosphorylation, disrupting mitochondria function, and triggering calcium dysfunction. To date genetic studies have revealed four genes that may be linked to autosomal dominant or familial early onset AD (FAD). These four genes include: amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2) and apolipoprotein E (ApoE). All mutations associated with APP and PS proteins can lead to an increase in the production of Abeta peptides, specfically the more amyloidogenic form, Abeta42. FAD-linked PS1 mutation downregulates the unfolded protein response and leads to vulnerability to ER stress. More... |
hsa04114 | Oocyte meiosis | 22 | During meiosis, a single round of DNA replication is followe...... During meiosis, a single round of DNA replication is followed by two rounds of chromosome segregation, called meiosis I and meiosis II. At meiosis I, homologous chromosomes recombine and then segregate to opposite poles, while the sister chromatids segregate from each other at meoisis II. In vertebrates, immature oocytes are arrested at the PI (prophase of meiosis I). The resumption of meiosis is stimulated by progesterone, which carries the oocyte through two consecutive M-phases (MI and MII) to a second arrest at MII. The key activity driving meiotic progression is the MPF (maturation-promoting factor), a heterodimer of CDC2 (cell division cycle 2 kinase) and cyclin B. In PI-arrested oocytes, MPF is initially inactive and is activated by the dual-specificity CDC25C phosphatase as the result of new synthesis of Mos induced by progesterone. MPF activation mediates the transition from the PI arrest to MI. The subsequent decrease in MPF levels, required to exit from MI into interkinesis, is induced by a negative feedback loop, where CDC2 brings about the activation of the APC (anaphase-promoting complex), which mediates destruction of cyclin B. Re-activation of MPF for MII requires re-accumulation of high levels of cyclin B as well as the inactivation of the APC by newly synthesized Emi2 and other components of the CSF (cytostatic factor), such as cyclin E or high levels of Mos. CSF antagonizes the ubiquitin ligase activity of the APC, preventing cyclin B destruction and meiotic exit until fertilization occurs. Fertilization triggers a transient increase in cytosolic free Ca2+, which leads to CSF inactivation and cyclin B destruction through the APC. Then eggs are released from MII into the first embryonic cell cycle. More... |
hsa04270 | Vascular smooth muscle contraction | 33 | The vascular smooth muscle cell (VSMC) is a highly specializ...... The vascular smooth muscle cell (VSMC) is a highly specialized cell whose principal function is contraction. On contraction, VSMCs shorten, thereby decreasing the diameter of a blood vessel to regulate the blood flow and pressure. More... |
hsa04720 | Long-term potentiation | 15 | Hippocampal long-term potentiation (LTP), a long-lasting inc...... Hippocampal long-term potentiation (LTP), a long-lasting increase in synaptic efficacy, is the molecular basis for learning and memory. Tetanic stimulation of afferents in the CA1 region of the hippocampus induces glutamate release and activation of glutamate receptors in dendritic spines. A large increase in [Ca2+]i resulting from influx through NMDA receptors leads to constitutive activation of CaM kinase II (CaM KII) . Constitutively active CaM kinase II phosphorylates AMPA receptors, resulting in potentiation of the ionic conductance of AMPA receptors. Early-phase LTP (E-LTP) expression is due, in part, to this phosphorylation of the AMPA receptor. It is hypothesized that postsynaptic Ca2+ increases generated through NMDA receptors activate several signal transduction pathways including the Erk/MAP kinase and cAMP regulatory pathways. The convergence of these pathways at the level of the CREB/CRE transcriptional pathway may increase expression of a family of genes required for late-phase LTP (L-LTP). More... |
hsa04020 | Calcium signaling pathway | 63 | Ca2+ that enters the cell from the outside is a principal so...... Ca2+ that enters the cell from the outside is a principal source of signal Ca2+. Entry of Ca2+ is driven by the presence of a large electrochemical gradient across the plasma membrane. Cells use this external source of signal Ca2+ by activating various entry channels with widely different properties. The voltage-operated channels (VOCs) are found in excitable cells and generate the rapid Ca2+ fluxes that control fast cellular processes. There are many other Ca2+-entry channels, such as the receptor-operated channels (ROCs), for example the NMDA (N-methyl-D-aspartate) receptors (NMDARs) that respond to glutamate. There also are second-messenger-operated channels (SMOCs) and store-operated channels (SOCs). More... |
hsa04912 | GnRH signaling pathway | 28 | Gonadotropin-releasing hormone (GnRH) secretion from the hyp...... Gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH. The GnRHR is coupled to Gq/11 proteins to activate phospholipase C which transmits its signal to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates the intracellular protein kinase C (PKC) pathway and IP3 stimulates release of intracellular calcium. In addition to the classical Gq/11, coupling of Gs is occasionally observed in a cell-specific fashion. Signaling downstream of protein kinase C (PKC) leads to transactivation of the epidermal growth factor (EGF) receptor and activation of mitogen-activated protein kinases (MAPKs), including extracellular-signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAPK. Active MAPKs translocate to the nucleus, resulting in activation of transcription factors and rapid induction of early genes. More... |
hsa04540 | Gap junction | 27 | Gap junctions contain intercellular channels that allow dire...... Gap junctions contain intercellular channels that allow direct communication between the cytosolic compartments of adjacent cells. Each gap junction channel is formed by docking of two 'hemichannels', each containing six connexins, contributed by each neighboring cell. These channels permit the direct transfer of small molecules including ions, amino acids, nucleotides, second messengers and other metabolites between adjacent cells. Gap junctional communication is essential for many physiological events, including embryonic development, electrical coupling, metabolic transport, apoptosis, and tissue homeostasis. Communication through Gap Junction is sensitive to a variety of stimuli, including changes in the level of intracellular Ca2+, pH, transjunctional applied voltage and phosphorylation/dephosphorylation processes. This figure represents the possible activation routes of different protein kinases involved in Cx43 and Cx36 phosphorylation. More... |
hsa04724 | Glutamatergic synapse | 43 | Glutamate is the major excitatory neurotransmitter in the ma...... Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system(CNS). Glutamate is packaged into synaptic vesicles in the presynaptic terminal. Once released into the synaptic cleft, glutamate acts on postsynaptic ionotropic glutamate receptors (iGluRs) to mediate fast excitatory synaptic transmission. Glutamate can also act on metabotropic glutamate receptors (mGluRs) and exert a variety of modulatory effects through their coupling to G proteins and the subsequent recruitment of second messenger systems. Presynaptically localized Group II and Group III mGluRs are thought to represent the classical inhibitory autoreceptor mechanism that suppresses excess glutamate release. After its action on these receptors, glutamate can be removed from the synaptic cleft by EAATs located either on the presynaptic terminal, neighboring glial cells, or the postsynaptic neuron. In glia, glutamate is converted to glutamine, which is then transported back to the presynaptic terminal and converted back to glutamate. More... |
hsa04970 | Salivary secretion | 22 | Saliva has manifold functions in maintaining the integrity o...... Saliva has manifold functions in maintaining the integrity of the oral tissues, in protecting teeth from caries, in the tasting and ingestion of food, in speech and in the tolerance of tenures, for example. Salivary secretion occurs in response to stimulation by neurotransmitters released from autonomic nerve endings. There are two secretory pathways: protein exocytosis and fluid secretion. Sympathetic stimulation leads to the activation of adenylate cyclase and accumulation of intracellular cAMP. The elevation of cAMP causes the secretion of proteins such as amylase and mucin. In contrast, parasympathetic stimulation activates phospholipase C and causes the elevation of intracellular Ca2+, which leads to fluid secretion; that is, water and ion transport. Ca2+ also induces amylase secretion, but the amount is smaller than that induced by cAMP. More... |
hsa04971 | Gastric acid secretion | 12 | Gastric acid is a key factor in normal upper gastrointestina...... Gastric acid is a key factor in normal upper gastrointestinal functions, including protein digestion and calcium and iron absorption, as well as providing some protection against bacterial infections. The principal stimulants of acid secretion at the level of the parietal cell are histamine (paracrine), gastrin (hormonal), and acetycholine (ACh; neurocrine). Stimulation of acid secretion typically involves an initial elevation of intracellular calcium and cAMP, followed by activation of protein kinase cascades, which trigger the translocation of the proton pump, H+,K+-ATPase, from cytoplasmic tubulovesicles to the apical plasma membrane and thereby H+ secretion into the stomach lumen. More... |
hsa04972 | Pancreatic secretion | 30 | The pancreas performs both exocrine and endocrine functions....... The pancreas performs both exocrine and endocrine functions. The exocrine pancreas consists of two parts, the acinar and duct cells. The primary functions of pancreatic acinar cells are to synthesize and secrete digestive enzymes. Stimulation of the cell by secretagogues such as acetylcholine (ACh) and cholecystokinin (CCK) causes the generation of an intracellular Ca2+ signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. The major task of pancreatic duct cells is the secretion of fluid and bicarbonate ions (HCO3-), which neutralize the acidity of gastric contents that enter the duodenum. An increase in intracellular cAMP by secretin is one of the major signals of pancreatic HCO3- secretion. Activation of the CFTR Cl- channel and the CFTR-dependent Cl-/HCO3- exchange activities is responsible for cAMP-induced HCO3- secretion. More... |
hsa04070 | Phosphatidylinositol signaling system | 19 |
Region: chr12:26488285..26986131 View in gBrowse
Copyright: Bioinformatics Lab, Institute of Psychology, Chinese Academy of Sciences Feedback
Last update: Feb 26, 2014