- Hot Results
- Quick Search
- Large-scale studies
- Genome-wide Association Studies of ADHD
- Genome-wide Linkage Studies of ADHD
- Genome-wide CNV Analyses of ADHD
- Meta-analysis Studies of ADHD
- Data Summary
Gene Report
Approved Symbol | CHRM3 |
---|---|
Approved Name | cholinergic receptor, muscarinic 3 |
Location | 1q41-q44 |
Position | chr1:239549865-240078750, + |
External Links |
HGNC: 1952 Entrez Gene: 1131 Ensembl: ENSG00000133019 UCSC: uc001hyp.2 |
No. of Studies | 0 (significant: 0; non-significant: 0; trend: 0) |
Source | Mapped by CNV; Mapped by PBA pathway |
ID | Location | Size | Band | Type | Inheritance |
---|---|---|---|---|---|
CNV_Williams[2010]_45 | chr1:235967993-237757467 (NCBI Build 36.1 (hg18)) | 1739833 | 1q43 | Gain |
GO terms by PBA (with statistical significance of FDR<0.05) (count: 1)
ID | Name | Type | Evidence[PMID] | No. of Genes in ADHDgene |
---|---|---|---|---|
GO:0016298 | lipase activity | Molecular Function | 49 |
GO terms by database search (count: 25)
ID | Name | No. of Genes in ADHDgene | Brief Description |
---|---|---|---|
hsa04080 | Neuroactive ligand-receptor interaction | 93 | |
hsa04972 | Pancreatic secretion | 30 | The pancreas performs both exocrine and endocrine functions....... The pancreas performs both exocrine and endocrine functions. The exocrine pancreas consists of two parts, the acinar and duct cells. The primary functions of pancreatic acinar cells are to synthesize and secrete digestive enzymes. Stimulation of the cell by secretagogues such as acetylcholine (ACh) and cholecystokinin (CCK) causes the generation of an intracellular Ca2+ signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. The major task of pancreatic duct cells is the secretion of fluid and bicarbonate ions (HCO3-), which neutralize the acidity of gastric contents that enter the duodenum. An increase in intracellular cAMP by secretin is one of the major signals of pancreatic HCO3- secretion. Activation of the CFTR Cl- channel and the CFTR-dependent Cl-/HCO3- exchange activities is responsible for cAMP-induced HCO3- secretion. More... |
hsa04020 | Calcium signaling pathway | 63 | Ca2+ that enters the cell from the outside is a principal so...... Ca2+ that enters the cell from the outside is a principal source of signal Ca2+. Entry of Ca2+ is driven by the presence of a large electrochemical gradient across the plasma membrane. Cells use this external source of signal Ca2+ by activating various entry channels with widely different properties. The voltage-operated channels (VOCs) are found in excitable cells and generate the rapid Ca2+ fluxes that control fast cellular processes. There are many other Ca2+-entry channels, such as the receptor-operated channels (ROCs), for example the NMDA (N-methyl-D-aspartate) receptors (NMDARs) that respond to glutamate. There also are second-messenger-operated channels (SMOCs) and store-operated channels (SOCs). More... |
hsa04810 | Regulation of actin cytoskeleton | 48 | |
hsa04970 | Salivary secretion | 22 | Saliva has manifold functions in maintaining the integrity o...... Saliva has manifold functions in maintaining the integrity of the oral tissues, in protecting teeth from caries, in the tasting and ingestion of food, in speech and in the tolerance of tenures, for example. Salivary secretion occurs in response to stimulation by neurotransmitters released from autonomic nerve endings. There are two secretory pathways: protein exocytosis and fluid secretion. Sympathetic stimulation leads to the activation of adenylate cyclase and accumulation of intracellular cAMP. The elevation of cAMP causes the secretion of proteins such as amylase and mucin. In contrast, parasympathetic stimulation activates phospholipase C and causes the elevation of intracellular Ca2+, which leads to fluid secretion; that is, water and ion transport. Ca2+ also induces amylase secretion, but the amount is smaller than that induced by cAMP. More... |
hsa04971 | Gastric acid secretion | 12 | Gastric acid is a key factor in normal upper gastrointestina...... Gastric acid is a key factor in normal upper gastrointestinal functions, including protein digestion and calcium and iron absorption, as well as providing some protection against bacterial infections. The principal stimulants of acid secretion at the level of the parietal cell are histamine (paracrine), gastrin (hormonal), and acetycholine (ACh; neurocrine). Stimulation of acid secretion typically involves an initial elevation of intracellular calcium and cAMP, followed by activation of protein kinase cascades, which trigger the translocation of the proton pump, H+,K+-ATPase, from cytoplasmic tubulovesicles to the apical plasma membrane and thereby H+ secretion into the stomach lumen. More... |
Region: chr1:239549865..240078750 View in gBrowse
Copyright: Bioinformatics Lab, Institute of Psychology, Chinese Academy of Sciences Feedback
Last update: Feb 26, 2014